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Abstract

Locally mass conservative methods for flow and transport are described and appli-
cations to the single phase flow and transport problems arising in porous media are
presented. The pressure equation is solved either by a discontinuous Galerkin method
or the mixed finite element method. The concentration equation is solved using a
higher order Godunov method or by a discontinuous Galerkin method. Theoretical
estimates are given in the case of the discontinuous Galerkin method. A velocity pro-
jection method based on the discontinuous Galerkin method is introduced. Numerical
simulations comparing the methods are presented.

Introduction

In either surface water or subsurface water environmental quality modeling, the flow
and multi-species transport may be solved separately using different numerical meth-
ods and grids due to differences in time and length scales involved. For example, in
surface water, the flow grid usually needs to incorporate high resolution near land
boundaries and should extend into the ocean to avoid spurious boundary effects. The
transport code may only simulate transport over a small portion of the flow domain,
and may use much coarser resolution. Therefore, for efficient coupling of flow and
transport codes, it is critical to be able to take velocities from an arbitrary flow
grid, and project them onto an arbitrary transport grid. For accurate multi-species
transport, it is desirable for the velocities to be locally conservative on the transport
grid.

Groundwater contaminant transport typically involves flow of one or more phases
through a highly heterogeneous porous media, mass transfer between phases includ-
ing the solid phases, advection with dispersion, and reaction of chemical and biological
species. These phenomena, augmented by others such as heat transfer, and local in-
jection and/or extraction of fluid, are closely coupled. On the discrete level, accuracy
requires locally conservative schemes to maintain mass balances.



The computational complexity of both these applications demands a highly efficient
approach. In general, it is not possible to solve the entire system of governing equa-
tions on the scale of the fastest reactions. Thus, out of necessity one must look at
employing dynamic adaptive grids and using higher order methods.

For simplicity in this paper we restrict our attention to subsurface flows, although
much of what is described can be applied to hydrodynamic flow problems where
Chorin splitting or pressure stabilization techniques are used. We shall consider two
schemes, mixed finite element methods and discontinuous Galerkin methods, which
can be defined with arbitrary orders and are locally conservative.

This paper is divided into five additional sections. In Section , we describe the
physical problem of single phase flow and transport in porous media. In Section |,
we formulate the discontinuous Galerkin method (DG) for solving the pressure and
the concentration equations. Theoretical convergence results are summarized. In
addition, a projection algorithm for obtaining a mass conservative velocity field is
introduced. The latter provides a viable approach for the bay and estuary problem
discussed above.

In Section , we briefly describe, the mixed finite element method (MFE) and the higher
order Godunov method. Computational results for modeling flow and transport are
presented for these methods in Section . In Section we conclude with some remarks
and future research possibilities.

Subsurface Problem

The subsurface flow problem we are focusing on is the single phase flow and the
transport of a contaminant in porous media. Numerical simulations of flow and
transport play an important role in the engineering decisions about the exploitation
of petroleum reservoirs and the control of groundwater pollution. We first state the
governing equation for single phase flow, then the governing equation for transport
in a domain Q ¢ R%, d = 1,2, 3:

~V-(KVp) = ¢ in Q, (1)
p = pp on TIp, (2)
KVp-v = g on Ty, (3)

where p denotes the pressure of the fluid, K is the permeability and measures the
resistance of the medium to fluid flow. The boundary 0f2 is the union of the Dirichlet
(Ip) and Neumann (I'y) parts.

The transport of a contaminant in Q over the time interval J = (0,7 is described by



the following equations:

oc
¢E+V-(uc—DVc) = f in QxJ (4)
(cu—DVe)-v = cuu on Ty x J, (5)
—DVce-v = 0 on Ty xJ, (6)
c(+,0) ¢(-) in €, (7)
where ¢ denotes the concentration of the contaminant, u represents the Darcy velocity,
the porosity ¢ is the fraction of the volume of the medium occupied by pores and
D is the molecular diffusion and mechanical dispersion tensor. In general, D can
be velocity dependent. The boundary conditions are mixed on the inflow part I'y,

and Neumann on the outflow part I'y,;. We recall that 02 = I';, U I'oyy and that
Ip={z€0Q: u-v >0}

Discontinuous Finite Element Methods

Functional Settings

Let & = {Ei, Es,...,Ey,} be a nondegenerate subdivision of €, where E; is a
triangle or a quadrilateral. The nondegeneracy requirement is that there exists
p > 0 such that if h; = diam(E}), then E; contains a ball of radius ph; in its
interior. Let h = max{h;, j=1...N,}. The edges of the polygon are denoted by
{e1,...,ep,,...,en,} where e, C Q1 < k < P, ;and ¢, C 02, P, +1 < k < M,.
With each edge e , we associate a unit normal vector v,. For k > Py, vy is taken to
be the unit outward vector normal to Of).

For s > 0, let

Hs(gh) = {U € LQ(Q) : U‘E‘j € HS(EJ),] =1.. Nh}
We now define the average and the jump for ¢ € H*(&,), s > % Let 1 <k < Py. For
ex = 0E; NOE; with v, exterior to E; for ¢ > j for some pair of elements (E;, E}), set
1 1
{0} =501l + 5(@lm;)ler, (8] = (@lm)ley — (Slm;) e
If the edge e, belongs to the exterior boundary 0f2, then we define

{o} =0, [0]=0.

We denote the usual Sobolev norm by ||p||s.z for p € H*(E) and E C IR*. We also
define the following seminorm

Np, L
ll* = > 11K2 Vo5,

=1



Let r be a positive integer. The finite element subspace is taken to be
Dr(gh) = {U : 'U‘Ej € PT(EJ) VJ}

where P,(E;) denotes the set of polynomials of (total) degree less than or equal to r
on E;, where E; is a triangle or a quadrilateral.

Schemes

We describe a discontinuous Galerkin formulation of the problems (1)-(3) and (4)-(7).
First, the pressure p is approximated by P € D, (&) satisfying

é/’KVP-VU—i (KVP-v} o] +Y [ {KVo-v,} [P

k=1"¢k k=1"€k

—/qv+ > / (KVv-vp)po+ Y /gv Vo € D, (Ep).

er el'p ekEFN

The continuous-time approximation of the concentration of the contaminant is given
by the map: C : [0,7] — D, (&) determined by the relations

Np, Np, P,
/¢—w+ZI/EjDVCVw—jZ_:1/Equ-Vw+Z C*u - vi[w]

k=1"¢€k

+ Z /C'u, ykw—zh {DVC Vk} Z {DVka}[C]

ekEFout k=1 €k k=1 €k

_/qw— > / Cnt - Vpw, Yw € D,(E),
ekEI‘m

where C* is the upwind value of the concentration on a given edge. The discretization
of the time derivative uses a backward-Euler method.

A Priori Error Estimates

The convergence of the discontinuous Galerkin method applied to single phase flow
is proved in the following hp error estimates [9].

Theorem 1 Let p be solution of (1)-(3). There is a constant M independent of h,r,p
such that for s > 2

h
lp— Pl < M——

where (1t = min(r + 1, s).



The convergence of the discontinuous Galerkin method applied to linear transport is
proved in the following hp error estimates [§]

Theorem 2 Let ¢ be solution of (4)-(7). If ¢ belongs to L>=(0,T; H*(Q2)) and Oc/0t
belongs to L*(0,T; H*(RY)), then there exists a constant M independent of h,r,c such
that for s > 2

n—1

e = Cllzeoriz2() < M

oz (el + llellierims@)

where p = min(r + 1, s).

DG Application: Locally Conservative Projection Algorithm for Changing
Meshes

Let Wjo and Vj» be finite dimensional subspaces corresponding to the old and new
meshes. Given U° € W, the problem is to find U" € Vj» such that the new velocity
field is locally mass conservative. The new velocity can be expressed as

U" = P,nU°+T,
where Py is a projection operator onto Vj». The local mass conservation implies
0=V-U"=V-Pn.U°+V.T.
By writing I' = V&, the following elliptic problem is obtained
—AP =V P.U°.

The elliptic problem is solved by using the discontinous Galerkin method: find &, in
Vin = D,(€p) such that

Np, P, b,
;/Ejv(bh'W/J_;;/ek{vq)h'Vk}[¢]+,§1/ek{v¢'”k}[¢h]
= /QV Uy, Vi) € D ().
Mixed Finite Element and Godunov Methods

Let W = L*(Q) denote the set of square integrable functions and H(Q;div) = {v €
(L2Q)? | V-v € L2(Q)}. Let V = {v € H(Q;div) | v-v = 0 on 0Q}. For



spatial discretization, we employ the lowest order Raviart-Thomas spaces (W}, x V},)
[7] defined over a rectangular grid of © with maximal grid spacing h > 0. W), C
W consists of the space of piecewise constants and V, C H (Q; div) is the space of
functions v = (v1, ve,v3) (if d = 3) such that v; is continuous, piecewise linear over
the grid in the ith direction and discontinuous, piecewise constant over the grid in
the other two directions. We also need the subspace V}, = ‘N/h nv.

We briefly describe the mixed finite element method for approximating (1). With
(+,-) denoting the L?(€2)-inner product, we write (1) in variational form as
(K 'u,v) — (p,V-v) = 0, veV,
(V-u,w) = (qw), wewW.
In the mixed finite element formulation, we seek the pair (U, P,) € V, x W), satisfying
(K 'Up,vp) — (P, V-vy) = 0, v, €V,
(V-Up,wy) = (q,wp), wp € W

Chippada, Dawson, Martinez, and Wheeler formulated and analyzed a conservative
projection method [1] based on a mixed hybrid finite element method for constructing
mass conservation velocity fields. These results were for the lowest order mixed spaces;
however, the analysis applies also to higher order approximating spaces.

An explicit, formally second order Godunov Godunov coupled with a mixed method is
used for the concentration equation [3]. The scheme has a CFL time constraint but no
spatial operator splitting is used, which helps reduce sensitivity to grid orientation.
By introducing z = —DVe, and defining ¢" = ¢(-,t"),c" = ¢(-,t"), we solve for
(C™, Q") € Vi, x W), such that
(D 'Q",v) — (C™,V -v) = —(cim,v- V), Yv €V},
Cn _ Cn—l
( At

where G is the numerical flux obtained by using a Godunov method.

yw)+ (V-Q"w) =—(V-G" 1 w), YweW,

Numerical Results

Single Phase Flow in a Layered Porous Media

Our first example consists of a layered porous media with highly varying permeabili-
ties. This example is a benchmark problem designed by the engineers of ANDRA [2].



We will compare the pressure fields obtained by the discontinuous Galerkin and the
mixed finite element methods. The two-dimensional domain (0,25000) x (0,695) is
shown on Fig. 1 and the permeabilities are given in the following table. The boundary
conditions are the following

p = 289 on {25000} x {0,200},

p = 310 on {25000} x {350,595},

p = 180+ 1602/25000 on {0,25000} x {695},
p = 200 on {0} x {295,595},

p = 286 on {0} x {0,200},

v

KVp- 0 elsewhere.

The computational meshes for DG and MFE are shown in Fig. 2. The pressure fields
are shown in Fig. 3. We note that the DG approximation is solved on a coarser mesh
than the MFE approximation. The number of degrees of freedom is 3024 for DG and
8800 for MFE. The isocontours obtained with both methods are almost identical.

Single Phase Flow in a Fractured Rock

We compared the flow patterns in a fractured rock using both the mixed finite ele-
ment method and the discontinuous Galerkin method. In this test case, two inclined
fracture zones intersect one another at depth. The medium is isotropic but the value
of the permeability is higher in the fracture zones (K = 10 ®ms~!) than in the
surrounding rock (K = 107®ms™'). The boundary of the region is assumed to be
impermeable to flow except for the top boundary (I'p) (see Fig. 4), where we impose
the following condition:

p(a:ay) =Y, V(may) € 1_WD-

A more detailed description can be found in [4]. Fig. 5 shows the pressure field. The
discontinuous Galerkin method is applied with a cubic order of approximation. The
lowest order Raviart-Thomas space is used for the mixed method. Fig. 6 shows the
velocity field obtained with both methods. The results are very similar and show that
the flow is concentrated in the fracture zones as expected.

Locally Conservative Projections: RIPRAP Facility

Locally conservative flow fields are needed for water quality tranport codes, such as
CE-QUAL-ICM, to ensure that mass balances are accurate. For applications at the
U.S. Army Corps of Engineers Engineer Research and Development Center (ERDC),
the hydrodynamic flow fields are generated by TABS-MDS, which is an adaptation



of the RMA-10 code [5] and which in general does not provide locally conservative
flows. Therefore, we use mixed methods in the projection algorithm UTProj3D to
construct flow fields with this property.

UTProj3D solves for the mass correction of a 3D velocity field as the solution to
an elliptic boundary value problem with appropriate boundary conditions on the
hydrodynamic mesh. The UTProj3D discretization is based upon the hybrid mixed-
finite element method using tetrahedral, hexahedral, and prismatic elements. This
discretization of the elliptic problem is known to conserve mass element-by-element
[1]. A zero flux boundary condition is chosen for the water surface velocity correction
and for the inflow boundaries. The latter ensures that no modification is made to the
inflow rate. Flux boundary conditions cannot be used everywhere, as this defines a
pure Neumann problem which produces a singular matrix having a one-dimensional
null space. This problem is removed by using zero pressure boundary conditions for
the correction velocity at the outflow boundary.

The following figures show the results from a test problem provided by Charlie Berger
and Gary Brown of ERDC. The test mesh is a model of the riprap facility located at
the ERDC in Vicksburg, MS. Fig. 7 shows a plan view of the test mesh, and Fig 8
shows the mass errors before and after the projection algorithm is applied.

Linear Transport

This benchmark problem [6] consists of simulating the propagation of a tracer in a 45
degrees flow pattern. Parameters used in the calculation are: a fluid flow velocity of
15.768my~! along the positive z and y axes, diffusion coefficient equal to 10=5¢m?2s~!
and porosity equal to 1. The computational grid on the domain (0, 10)? is structured
and consists of 50 x 50 cells. This gives a grid Peclet number of 100. The initial
concentration consists of a concentration mound of unit concentration with a width
of 2m occupying the square region (1,3)%. The concentration is zero elsewhere. Zero
gradient boundary conditions are imposed around the periphery of the domain. A
Courant number of 0.1 is used in the calculation and the simulation is run for 5.10%s.
The contours obtained with the discontinuous Galerkin and the higher order Godunov
methods are shown in Fig. 9. We observe that there is less numerical diffusion in the
case of the DG approximation.



Conclusions

A new higher order locally conservative scheme for computing Darcy flow has been
presented. Computational results indicate that concentration grids can be coarser for
higher order velocity approximations. Our current research is to investigate the use
of different grids for concentration and for flow.
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Figure 1: Geometry of computational domain
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Figure 2: Meshes (a) DG (20x24) (b) MFE (88x100).




(b)
Figure 3: Pressure field: (a) DG 3024 dofs and (b) MFE 8800dofs.
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Figure 4: Diagram of the problem showing the fracture zones and the boundary
conditions
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Figure 5: Pressure Field: (a) DG cubic approximation and (b) MFE



(b)
Figure 6: Velocity Field: (a) DG r = 3 and (b) MFE
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Figure 7: Plan view of test mesh
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Figure 8: Local mass errors (a) before mass-error reduction (b) after mass error

reduction
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Figure 9: Concentration contour: (a) discontinuous Galerkin (b) higher order Go-
dunov
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K(m/year)

3.1536e-5

6.3072

3.1536e-6

25.2288

Table 1: Permeability tensor in the four rock layers




